

Snekbot Audit Report

2025-05-30

Table of Contents
Snekbot Audit Report 1
2025-05-30 1
Table of Contents 2
1 - Audit Manifest 4

1.a - Software versions and dependencies 4
1.b - Repositories 4

2 - Specification 5
2.a - High Level Objectives 5
2.b - Informal Specification (what it is/how it works) 5

3 - Findings Summary 6
3.a - BL-001 Misuse of ServerConfig.PublicKeyCallback may cause authorization bypass in
golang.org/x/crypto 7

3.a.i - Description 7
3.a.ii - Recommendation 8
3.a.iii - Resolution 8

3.b - BL-002 Non-linear parsing of case-insensitive content in golang.org/x/net/html 9
3.b.i - Description 9
3.b.ii - Recommendation 9
3.b.iii - Resolution 9

3.c - BL-003 Discord command handler missing type conversion error check 10
3.c.i - Description 10
3.c.ii - Recommendation 10
3.c.iii - Resolution 10

3.d - BL-004 HTTP Proxy bypass using IPv6 Zone IDs in golang.org/x/net 11
3.d.i - Description 11
3.d.ii - Recommendation 11
3.d.iii - Resolution 11

3.e - BL-005 go-redis allows potential out of order responses when CLIENT SETINFO times
out during connection establishment 12

3.e.i - Description 12
3.e.ii - Recommendation 12
3.e.iii - Resolution 12

3.f - BL-006 Missing authentication on alerts service endpoints 13
3.f.i - Description 13
3.f.ii - Recommendation 13
3.f.iii - Resolution 13

3.g - BL-007 Use of static initialization vector with AES CBC 14
3.g.i - Description 14
3.g.ii - Recommendation 14

3.g.iii - Resolution 14
3.h - BL-008 Prevent crashes by guarding against nil 15

3.h.i - Description 15
3.h.ii - Recommendation 15
3.h.iii - Resolution 15

4 - Appendix 16
4.a - Disclaimer 16
4.b - Issue Guide 17

4.b.i - Severity 17
4.b.ii - Status Status 17
4.d - About Us 18
4.d.i - Links 18

1 - Audit Manifest
Please find below the list of pinned software dependencies and repositories which were covered
by the audit.

1.a - Software versions and dependencies

Software Version Commit

Snekbot - 9d1c084acdb9cd3369e1e992
373b44d71acf2cf1

github.com/go-telegram-bot-a
pi/telegram-bot-api

5.5.1 4fe428c77a68a9903ab5bfcae
cb978003ce0424b

github.com/bwmarrin/discord
go

0.28.1 da9e191069d09e1b467145f5
758d9b11cb9cca0d

1.b - Repositories

Repository Git Ref

https://github.com/snekbotio/bot 9d1c084acdb9cd3369e1e992373b44d71acf2
cf1

2 - Specification
This specification details the goals of the project which we digest and convert into an informal
specification or description of the pieces and how they interact to produce the desired
outcomes.

2.a - High Level Objectives
1. Provide a simple chat bot interface for trading Cardano native tokens
2. Provide a custodial wallet associated with a chat user
3. Provide withdrawals to chat user’s own wallet

2.b - Informal Specification (what it is/how it works)
1. Discord
2. Hooks (Oura and USD price webhook receiver)
3. Server (Telegram)
4. Alerts
5. Wallet
6. Redis
7. PostgreSQL

3 - Findings Summary

ID Title Severity Status

BL-001 Misuse of
ServerConfig.PublicKeyCallback may
cause authorization bypass in
golang.org/x/crypto

Low Resolved

BL-002 Non-linear parsing of case-insensitive
content in golang.org/x/net/html

Low Resolved

BL-003 Discord command handler missing type
conversion error check

Medium Acknowledged

BL-004 HTTP Proxy bypass using IPv6 Zone IDs
in golang.org/x/net

Low Resolved

BL-005 go-redis allows potential out of order
responses when CLIENT SETINFO times
out during connection establishment

Low Resolved

BL-006 Missing authentication on alerts service
endpoints

Low Acknowledged

BL-007 Use of static initialization vector with AES
CBC

High Resolved

BL-008 Prevent crashes by guarding against nil Low In Progress

3.a - BL-001 Misuse of ServerConfig.PublicKeyCallback may
cause authorization bypass in golang.org/x/crypto

Category Commit Fixed Severity Status

Auth bypass 26da29fe01481f9bbbdd6b53c40
478bccae5f3cc

Low Resolved

3.a.i - Description
GitHub Advisory: https://github.com/advisories/GHSA-v778-237x-gjrc

Applications and libraries which misuse the ServerConfig.PublicKeyCallback callback may be
susceptible to an authorization bypass.

The documentation for ServerConfig.PublicKeyCallback says that "A call to this function does
not guarantee that the key offered is in fact used to authenticate." Specifically, the SSH protocol
allows clients to inquire about whether a public key is acceptable before proving control of the
corresponding private key. PublicKeyCallback may be called with multiple keys, and the order in
which the keys were provided cannot be used to infer which key the client successfully
authenticated with, if any. Some applications, which store the key(s) passed to
PublicKeyCallback (or derived information) and make security relevant determinations based on
it once the connection is established, may make incorrect assumptions.

For example, an attacker may send public keys A and B, and then authenticate with A.
PublicKeyCallback would be called only twice, first with A and then with B. A vulnerable
application may then make authorization decisions based on key B for which the attacker does
not actually control the private key.

Since this API is widely misused, as a partial mitigation golang.org/x/crypto@v0.31.0 enforces
the property that, when successfully authenticating via public key, the last key passed to
ServerConfig.PublicKeyCallback will be the key used to authenticate the connection.
PublicKeyCallback will now be called multiple times with the same key, if necessary. Note that
the client may still not control the last key passed to PublicKeyCallback if the connection is then
authenticated with a different method, such as PasswordCallback, KeyboardInteractiveCallback,
or NoClientAuth.

Users should be using the Extensions field of the Permissions return value from the various
authentication callbacks to record data associated with the authentication attempt instead of
referencing external state. Once the connection is established the state corresponding to the
successful authentication attempt can be retrieved via the ServerConn.Permissions field. Note

https://github.com/advisories/GHSA-v778-237x-gjrc

that some third-party libraries misuse the Permissions type by sharing it across authentication
attempts; users of third-party libraries should refer to the relevant projects for guidance.

3.a.ii - Recommendation
This is classified as a critical (CVSS v3 9.1/10) vulnerability. This library is used by
github.com/bwmarrin/discordgo which is used for accessing the Discord API. Upon inspection,
the vulnerable code paths are not executed. Marking as low priority.

Recommendation is to update using the dependabot provided pull request.

3.a.iii - Resolution
Updated using the provided pull request.

3.b - BL-002 Non-linear parsing of case-insensitive content in
golang.org/x/net/html

Category Commit Fixed Severity Status

Denial of Service 1af3be11a53d989c793451967d
d115e5e4a3db4a

Low Resolved

3.b.i - Description
GitHub Advisory: https://github.com/advisories/GHSA-w32m-9786-jp63

An attacker can craft an input to the Parse functions that would be processed non-linearly with
respect to its length, resulting in extremely slow parsing. This could cause a denial of service.

3.b.ii - Recommendation
This is classified as a high (CVSS v3 8.7/10) vulnerability. This vulnerability is explicitly in the
HTML parsing functions, which is not used in snekbot or dependency libraries. Marking as low
priority.

Recommendation is to update using the dependabot provided pull request.

3.b.iii - Resolution
Updated using the provided pull request.

https://github.com/advisories/GHSA-w32m-9786-jp63

3.c - BL-003 Discord command handler missing type conversion
error check

Category Commit Severity Status

Crash Medium Acknowledged

3.c.i - Description
There is an unchecked error in infra/handler/discord/command_handler.go line 336, which
should be caught by golangci-lint execution. As there is no pull request automation in the
repository, it's likely this manual testing step was not always executed. Marking as medium
priority due to process improvement.

3.c.ii - Recommendation
Add automatic golangci-lint workflow on pull request.

Change volume is low enough that even with a private repository on a free plan, it will fit well
within the allotted GitHub Hosted Runner minutes. Example Workflow

Implement handlers for type conversion.
In examples/slash_commands/main.go, there is an example of converting the slice into a map,
and then checking the type and using the StringValue() utility function. Unfortunately, this
function panics when given a bad type. However, it does show that we can use the Type field of
ApplicationCommandInteractionDataOption to compare against
ApplicationCommandOptionString and only performing the type conversion if it matches. This
would allow for providing the user with better failure error messages.

3.c.iii - Resolution
“While you're right, this is a special case where we've constructed the
ApplicationCommandInteractionDataOption so there is Type is going to be 0. Error handling in
general needs to be improved and better communicated to the user, but that will require a
significant refactor. I'm OK with the default behavior being page 0 and swallowing the error.”

Automatic golangci-lint workflows were added in
8048ebabc01483316cd036e2fdb94ac406271241 to catch future issues.

https://github.com/blinklabs-io/adder/blob/main/.github/workflows/golangci-lint.yml
https://github.com/bwmarrin/discordgo/blob/33ffff21d31aba5d7b7621cc9fcd92bfaa2eb2fe/examples/slash_commands/main.go#L271

3.d - BL-004 HTTP Proxy bypass using IPv6 Zone IDs in
golang.org/x/net

Category Commit Severity Status

Info Disclosure 9ea64bef96fcdc6eb3d62e52f3a
c9e17e82c4dd7

Low Resolved

3.d.i - Description
GitHub Advisory: https://github.com/advisories/GHSA-qxp5-gwg8-xv66

Matching of hosts against proxy patterns can improperly treat an IPv6 zone ID as a hostname
component. For example, when the NO_PROXY environment variable is set to
"*.example.com", a request to "[::1%25.example.com]:80` will incorrectly match and not be
proxied.

3.d.ii - Recommendation
This is classified as a moderate (CVSS v3 4.4/10) vulnerability. This vulnerability is explicitly in
the HTTP proxy handing function, which is not used in snekbot or dependency libraries. Marking
as low priority.

Recommendation is to update using the dependabot provided pull request.

3.d.iii - Resolution
Updated using the provided pull request.

While resolving this issue, another issue was also resolved in an unused code path in the
golang.org/x/net library: https://github.com/advisories/GHSA-vvgc-356p-c3xw

https://github.com/advisories/GHSA-qxp5-gwg8-xv66
https://github.com/advisories/GHSA-vvgc-356p-c3xw

3.e - BL-005 go-redis allows potential out of order responses
when CLIENT SETINFO times out during connection
establishment

Category Commit Severity Status

Info Disclosure 076662869aac844d0adeda9048
b6caedbb56cede

Low Resolved

3.e.i - Description
The issue only occurs when the CLIENT SETINFO command times out during connection
establishment. The following circumstances can cause such a timeout:

1. The client is configured to transmit its identity
2. There are network connectivity issues
3. The client was configured with aggressive timeouts

The impact differs by use case:

● Sticky connections: Rather than using a connection from the pool on-demand, the caller
can stick with a connection. Then you receive persistent out-of-order responses for the
lifetime of the connection.

● Pipelines: All commands in the pipeline receive incorrect responses.
● Default connection pool usage without pipelining: When used with the default ConnPool

once a connection is returned after use with ConnPool#Put the read buffer will be
checked and the connection will be marked as bad due to the unread data. This means
that at most one out-of-order response before the connection is discarded.

3.e.ii - Recommendation
This is classified as a low (CVSS v3 3.7/10) vulnerability. This vulnerability is limited to a
connection timeout error condition with limited avenue for remote exploitation. This has the
potential to expose ordering issues by returning out of order data from the cache. Marking as
low priority.

Recommendation is to update using the dependabot provided pull request.

3.e.iii - Resolution
Updated using the provided pull request.

3.f - BL-006 Missing authentication on alerts service endpoints

Category Commit Severity Status

Auth Bypass Low Acknowledged

3.f.i - Description
The alerts service allows unauthenticated POST requests on the incoming HTTP routes. This
service is intended as a message gateway between the snekx.io service and Telegram. These
endpoints could be used for generating fake messages to Telegram. However, an attacker
would need to determine the correct payload shape and discover the service, which limits this to
an impersonation vulnerability with an extremely limited attack surface which produces a limited
outcome requiring additional social engineering to exploit, such as convincing others to make
bad trades based on incorrect information. Marking as low.

3.f.ii - Recommendation
Recommendation is to introduce some form of authentication for these endpoints. If this is not
feasible, restricting by IP address or some other manner should be done.

This may not be possible and may simply be an accepted risk due to vendor requirements as
we cannot dictate changes to snekx here.

3.f.iii - Resolution
Due to the low probability of this being abused and the limited impact given this feature’s limited
use, the risk is accepted.

3.g - BL-007 Use of static initialization vector with AES CBC

Category Commit Severity Status

Info Disclosure 906f01379eccd4bb0b5e71843c
16703f8be3ff12

High Resolved

3.g.i - Description
A static initialization vector (IV) with AES CBC used for multiple encryption operations can be
used to reveal patterns in the plaintext. Since this encryption is being used to store seed
phrases, which share a common library of allowed words, it's more vulnerable than a typical
password to pattern cryptanalysis. For the best security, a randomly generated IV should be
used for each encryption operation. The IV is safe to be stored along with the encrypted text, as
it's simply a block of dummy data padding. Exploitation would require access to the snekbot
database. Marking as high.

3.g.ii - Recommendation
Recommendation is to generate and store the IV along with each encrypted message.

https://en.wikipedia.org/wiki/Initialization_vector

3.g.iii - Resolution
This was resolved by storing the IV along with each message in commit
906f01379eccd4bb0b5e71843c16703f8be3ff12 in the upstream repository.

https://en.wikipedia.org/wiki/Initialization_vector

3.h - BL-008 Prevent crashes by guarding against nil

Category Commit Severity Status

Crash Low In Progress

3.h.i - Description
Errors which can lead to application stability problems can be detected using Nilaway, from
Uber. The nature of these errors mean they are rarely a security issue, but a deep check was
done on areas in the report specifically dealing with encryption, secrets, database, or
authentication. Upon further investigation, we found no issues where a nil pointer could result in
a bypass of authentication or authorization, leak of secrets or credentials, or manipulation of
data into the database. Marking as low.

3.h.ii - Recommendation
Blink Labs uses nilaway regularly to detect possible crash paths in our code. We recommend
performing these checks yourself periodically to reduce crash vectors.

https://github.com/uber-go/nilaway

3.h.iii - Resolution
Due to the nature of the deployment infrastructure in place, crashes have negligible impact on
users. The current risk is accepted while work is in progress to scan and address the issues
over time.

https://github.com/uber-go/nilaway

4 - Appendix

4.a - Disclaimer
This Software Repository Security Audit Report (“Report”) is provided on an “as is” basis, for
informational purposes only, and should not be construed as investment advice or any other
kind of advice on legal, financial, or other matters. The entities and individuals involved in
preparing this Report (“Auditors”) do not guarantee the accuracy, completeness, or usefulness
of the information provided herein and shall not be held liable for any contents, errors,
omissions, or inaccuracies in this Report or for any actions taken in reliance thereon.

The Auditors make no claims, promises, or guarantees about the absolute security of the smart
con- tracts audited and the underlying code. The findings, interpretations, and conclusions
presented in this Report are based on the best efforts of the Auditors and reflect their
professional judgment at the time of the audit. The blockchain and cryptocurrency landscape is
rapidly evolving, and new vulnerabilities may emerge that were not identified or considered at
the time of the audit. As such, this Report should not be considered as a comprehensive
guarantee of the audited code’ security.

The Auditors disclaim, to the fullest extent permitted by law, any and all warranties, whether
express or implied, including without limitation, warranties of merchantability, fitness for a
particular purpose, and non-infringement. The Auditors shall not be liable for any direct, indirect,
incidental, special, exemplary, or consequential damages (including, but not limited to,
procurement of substitute goods or services; loss of use, data, or profits; or business
interruption) however caused and on any theory of liability, whether in contract, strict liability, or
tort (including negligence or otherwise) arising in any way out of the use of this Report, even if
advised of the possibility of such damage.

This Report is not exhaustive and is subject to change without notice. The Auditors reserve the
right to update, modify, or revise this Report based on new information, subsequent
developments, or further analysis. The Auditors encourage all interested parties to conduct their
own independent research and due diligence when evaluating the security of smart contracts.

By using or relying on this Report, you agree to indemnify and hold harmless the Auditors from
any claim, demand, action, damage, loss, cost, or expense, including attorney fees, arising out
of or relating to your use of or reliance on this Report.

If you have any questions or require further clarification regarding this Report, please contact
the support@blinklabs.io.

4.b - Issue Guide

4.b.i - Severity

Severity Description

Critical Critical issues highlight exploits, bugs, loss of funds, or other
vulnerabilities that prevent the App from working as intended. These
issues have no workaround.

High High issues highlight exploits, bugs, or other vulnerabilities that cause
unexpected transaction failures or may be used to trick general users
of the App. Apps with High issues may still be functional.

Medium Medium issues highlight edge cases where a user can purposefully use
the App in a non-incentivized way and often lead to a disadvantage for
the user.

Low Low issues highlight cases where user impact is limited and cannot be
abused for gain or abuse which negatively impacts other users.

Info These are not issues. These are just pieces of information that are
beneficial to the App creator, or should be kept in mind for the end user.
These are not necessarily acted on or have a resolution, they are
logged for the completeness of the audit.

4.b.ii - Status Status

Status Description

Resolved Issues that have been fixed by the project team.

Mitigated Issues that have a partial mitigation, and are now vulnerable in only
extreme corner cases.

Acknowledged Issues that have been acknowledged or partially fixed by the project
team. Projects can decide to not fix issues for whatever reason.

Identified Issues that have been identified by the audit team. These are waiting
for a response from the project team.

4.d - About Us
Blink Labs is focused on creating open source software and custom solutions on the Cardano
blockchain. Our seasoned team at Blink Labs possesses a diverse range of expertise acquired
from decades of experience across a variety of industries. Our experience ranges projects of all
scales, from one man solopreneurs to global-scale projects in communications, storage, cloud
computing, big data analytics, and the highly regulated fields of global life science and
advertising. We harness this wealth of experience to craft robust and scalable systems tailored
specifically for the Cardano blockchain.

Our primary mission is to deliver top-tier software and services to enhance the Cardano
ecosystem, streamlining time-to-market and bolstering reliability through open source solutions.
We are dedicated to building high-quality, highly available, and repeatable solutions that
empower the Cardano community and contribute to the blockchain's success.

4.d.i - Links
Customer - https://snekbot.io
Blink Labs - https://blinklabs.io

	Snekbot Audit Report
	2025-05-30
	Table of Contents
	1 - Audit Manifest
	1.a - Software versions and dependencies
	1.b - Repositories

	2 - Specification
	2.a - High Level Objectives
	2.b - Informal Specification (what it is/how it works)

	
	3 - Findings Summary
	3.a - BL-001 Misuse of ServerConfig.PublicKeyCallback may cause authorization bypass in golang.org/x/crypto
	3.a.i - Description
	3.a.ii - Recommendation
	3.a.iii - Resolution

	3.b - BL-002 Non-linear parsing of case-insensitive content in golang.org/x/net/html
	3.b.i - Description
	3.b.ii - Recommendation
	3.b.iii - Resolution

	3.c - BL-003 Discord command handler missing type conversion error check
	3.c.i - Description
	3.c.ii - Recommendation
	3.c.iii - Resolution

	3.d - BL-004 HTTP Proxy bypass using IPv6 Zone IDs in golang.org/x/net
	3.d.i - Description
	3.d.ii - Recommendation
	3.d.iii - Resolution

	3.e - BL-005 go-redis allows potential out of order responses when CLIENT SETINFO times out during connection establishment
	3.e.i - Description
	3.e.ii - Recommendation
	3.e.iii - Resolution

	3.f - BL-006 Missing authentication on alerts service endpoints
	3.f.i - Description
	3.f.ii - Recommendation
	3.f.iii - Resolution

	3.g - BL-007 Use of static initialization vector with AES CBC
	3.g.i - Description
	3.g.ii - Recommendation
	3.g.iii - Resolution

	3.h - BL-008 Prevent crashes by guarding against nil
	3.h.i - Description
	3.h.ii - Recommendation
	3.h.iii - Resolution

	4 - Appendix
	4.a - Disclaimer
	4.b - Issue Guide
	4.b.i - Severity
	4.b.ii - Status Status
	4.d - About Us
	4.d.i - Links

